반응형

SELECT A.ORDER_ID,
       A.ORDER_DATE,
       A.ORDER_MODE ,
       C.FIRST_NAME EMPNAME,
       D.CUST_FIRST_NAME ,
       B.PRODUCT_ID,
       B.UNIT_PRICE,
       B.QUANTITY
  FROM ORDERS A,
       ORDER_ITEMS B,
       EMPLOYEES C,
       CUSTOMERS D
 WHERE A.ORDER_ID = B.ORDER_ID
   AND A.EMPLOYEE_ID = C.EMPLOYEE_ID
   AND A.CUSTOMER_ID = D.CUSTOMER_ID
   AND A.ORDER_DATE >= TO_DATE('20120101', 'YYYYMMDD')
   AND A.ORDER_DATE < TO_DATE('20120102', 'YYYYMMDD') ;


alter session set statistics_level=all;
select * from table(dbms_xplan.display_cursor(null, null, 'allstats last'));
select * from table(dbms_xplan.display_cursor(null, null, 'allstats last advanced'));

* ORDER_ITEM을보면 E-Rows가 29M으로 많이 조회된다


--사전 분석
select TABLE_NAME, COLUMN_NAME, DATA_TYPE, NUM_DISTINCT
  from dba_tab_columns
 where TABLE_NAME IN ('ORDER_ITEMS','ORDERS','CUSTOMERS','EMPLOYEES') 
   and NUM_DISTINCT > 0
 order by NUM_DISTINCT DESC;

create index IDX_ORDITEM_ORDID on order_items(ORDER_ID);

* A-Time이나 Buffer등 확 줄은 것을 확인할 수 있다.

-- 순서 지정
순서 힌트 지정 이유는 옵티마이저가 설정한 최적실행 경로 순서를 힌트로 줌으로써 혹시 나중에 실행 순서가 바뀌더라도 이전의 실행순서를 따르게 하기 위함
SELECT /*+ LEADING (A, C, D, B) */
       A.ORDER_ID,
       A.ORDER_DATE,
       A.ORDER_MODE ,
       C.FIRST_NAME EMPNAME,
       D.CUST_FIRST_NAME ,
       B.PRODUCT_ID,
       B.UNIT_PRICE,
       B.QUANTITY
  FROM ORDERS A,
       ORDER_ITEMS B,
       EMPLOYEES C,
       CUSTOMERS D
 WHERE A.ORDER_ID = B.ORDER_ID
   AND A.EMPLOYEE_ID = C.EMPLOYEE_ID
   AND A.CUSTOMER_ID = D.CUSTOMER_ID
   AND A.ORDER_DATE >= TO_DATE('20120101', 'YYYYMMDD')
   AND A.ORDER_DATE < TO_DATE('20120102', 'YYYYMMDD') ;

반응형

공인교육인증절차 hands-on

 

1. pearsonvue.com/oracle에서 Submit course form 클릭 후 Login

 

 

Oracle Database 11g Administrator OCP -> Next Step

 

 

Next Step

 

 

Next Step

 

 

개인이 교육 받은 기관명  입력 -> Next Step

 

 

Next Step

 

 

 

 

Submit

 

 

  Oracle에서 인증해주기를 기다리고 Approved로 변경되면

핸즈온인증 받으신 후 certview.oracle.com들어가셔서 테스팅아이디 등록하시면 오라클 자격증 다운가능합니다 

'Certification > OCP' 카테고리의 다른 글

ORACLE Certified Professional  (0) 2016.03.08
반응형

파티션 테이블(partition table)

 

파티션 테이블 설계

대용량 테이블의 성능저하를 방지하고 관리를 수월하게 하고자 파티션 테이블을 고려할 수 있는데, 서로 다른 파티션에 데이터를 저장함으로써 노드 간의 디스크 경합을 최소화하여 성능을 향상한다.

 

 파티션 테이블의 장단점

 장점

 - 디스크 장애시 해당 파티션만 영향을 받으므로 데이터의 훼손 가능성이 감소하고 가용성이 향상

 - 개별 Partition 단위의 관리가 가능 (DML, Load, Import, Export, Exchange 등)

 - 조인시 파티션 간의 병렬 처리 및 파티션 내에서의 병렬 처리를 수행  

 - 데이터 액세스 범위를 줄여 성능을 향상 시키고 테이블의 파티션 단위로 디스크의 I/O를 분산해 부하를 감소

 단점

 - 파티션 키 값 변경에 대한 별도 관리 필요 ( 관리가 불편 )

 - 파티션에 기준이 되는 것이 컬럼의 일부일 때 일부를 기준으로 파티션을 구성할 수 없으므로 이에 해당하는 오버헤드 컬럼이 있어야 함.

 

 파티션의 종류와 특징

파티션 종류 

내용 

 RANGE

 - 일, 월, 분기 등 특정 컬럼의 정렬 값을 기준으로 분할하는 방식으로 논리적인 범위의 분산에 효율적
 - 관리가 용이하며 이력 데이터에 적합
 - 파티션을 결정하는 컬럼을 명시하여야 하며 MAXVALUE값은 NULL값을 포함
 - 범위가 포함하는 데이터의 양이 일정하지 않은 경우 특정 파티션에 대해 데이터가 편중될 수 있음

 HASH

 - 데이터의 균등 분할을 통해 성능을 향상 시키고자 하는 경우에 효율적
 - 파티션 키에 해시함수를 적용한 결과 값이 같은 레코드를 같은 파티션 세그먼트에 저장해 두는 방식
 - Row와 파티션 간의 매핑을 사용자가 제어할 수 없음
 - 파티션 키의 해시 값에 의해 데이터가 다수의 파티션에 분배되며 균등한 분배를 위해서는 파티션 개수를

  명시하여야 하며 파티션의 수는 2의 거듭제곱의 수로 지정
 - NULL값은 첫 번째 파티션에 위치함
 - 고객ID처럼 변별력이 좋고 데이터 분포가 고른 컬럼을 파티션 키 컬럼으로 선정해야 효과적

 LIST

 -  파티션 컬럼을 명시, 키 컬럼 값을 기준으로 파티션하는 방식 컬럼의 구체적인 값들에 대해 파티션을 명확하게

   컨트롤하고자 할 때 효율적
 -  연관되지 않은 데이터, 순서에 맞지 않는 데이터의 그루핑을 쉽게 할 수 있음
 -  명시되지 않은 값을 가진 Row는 Insert가 불가능
 -  여러 컬럼으로 파티션 키를 생성할 수 없고 오직 하나의 컬럼만 가능
 -  각 파티션에 대해 모든 파티션 키는 반드시 문자로 LIST 되어야 하며 파티션값의 List는 4K까지 가능
 -  파티션 키의 값은 64K-1을 초과할 수 없고 NULL 값을 포함한 어떠한 값이라도 한 번만 명시 가능

 COMPOSITE

 - Range + List, Range + Hash 파티션 등의 조합으로 구성
 - 이력 데이터와 온라인 데이터의 복합적인 성격을 지닌 데이터의 분할에 용이하며 병렬 DML 작업에 뛰어난

  수행성능을 보장
 - 파티션 및 서브 파티션 단위의 관리 작업 수행이 가능
 - Hash 파티셔닝의 경우 스토리지 스트라이핑으로 인해 디스크 점핑이 발생할 수 있으므로 충분한 검토 후 적용

 INTERVAL

 - RANGE 파티셔닝과 유사하며 파티션이 추가되는 규칙을 지정하는 방식
 - 기존 파티션에 데이터가 있고 새로운 데이터가 입력될 때에만 새로운 파티션을 생성함
 - RANGE 파티션에서 MAXVALUE 파티션 없이 생성 후 데이터가 추가되면 지정된 INTERVAL 만큼 늘어난

   범위를 가지는 파티션이 생성됨

 REFERENCE

 - 자식 테이블 파티션이 부모 테이블 파티션과 일대일 관계인 환경에서 자식테이블을 파티션할 때 적용
 - 기본 키 – 외래 키 관계를 통해 자식 테이블의 파티셔닝을 부모 테이블로부터 상속
 - 파티셔닝 키는 자식 테이블의 실제 컬럼에 저장되지 않음

* RANGE > LIST > HASH 순으로 많이씀

 

 

 테이블 선정 조건

 - 일부 데이터가 손상되더라도 나머지 데이터 사용이 가능해야 하는 테이블

 - 복구를 최대한 빨리 적용해야 하는 테이블

 - 테이블을 크기가 큰 경우

 

 파티션 키 선정 조건

   데이터가 어떤 파티션에 저장되는지 알 수 있는 Range Partitioning을 사용하는 것이 Hash Partitioning을 사용하는 경우에 비해

   관리측면에서 유리한 점이 많다. Range Partitioning 에서의 Load Balancing은 파티션 키에 의존하므로 파티션 키 선정시 이를 고려해야 함.

   여러 파티션에 대한 조회는 한 테이블로 구성하였을 경우보다 떨어진다. 따라서 파티션으로 구성하였을 경우 파티션의 기준이되는 키를 잘 구성해야한다

 

   - Primary Key 혹은 Primary Key의 첫번째 컬럼  -- > * 파티셔닝 의미없음

   - 매일 생성되는 날짜 컬럼

   - 백업 기준이 되는 날짜 컬럼

   - 자주 조인이 일어나는 테이블의 Foreign Key

   - Partition간 이동이 없는 컬럼

   - OLTP에서 자주 SQL구문에서 사용되는 컬럼

   - I/O 병목을 줄일 수 있는 데이터 분포도가 양호한 컬럼

 

 파티션 개수 결정

  - 검색조건에서 Composite Primary Key의 일부분만을 사용할 경우 Partition의 개수가 적은 것이 속도가 더빠름

    그러나 Composite Primary Key의 전체를 사용할 경우는 Partition 의 개수가 많은 것이 속도가 더 빠름

  - Batch, OLAP 작업일 경우는 partition 개수가 적은 거이, OLTP작업일 경우는 Partition 개수가 많은 것이  Performance가 더 우수

  - 실제 테이블을 구성함에 있어 Partition의 개수가 너무 적을 경우 Partition효과를 볼수 없게 되고 너무 많을 경우 각 Partition의 value range를

   체크 하므로 parsing time이 길어지고 관리대상이 많아지는 단점이 있음.

 

 

RANGE PARTITION

--업무 쿼리(예를들어 업무때 사용하는 쿼리가 이렇다 치면)
select order_id, product_id
 from ORDER_ITEMS
where to_char(order_date,'yyyymm') between 200801 and 2000804;

* 결과가 너무 많이 나와 관리하기 불편하다.

이때 파티션을 나눠 관리하며 보통 월단위로 많이 나눈다.

 

select * from order_items;

select /*+ parallel(a 16) */ to_char(order_date, 'yyyy'), count(*)
  from order_items a
 group by to_char(order_date, 'yyyy')
 order by to_char(order_date, 'yyyy');

 

--가상컬럼 추가하여 테이블생성
 create table order_item_pt_rg (
    ORDER_ID    VARCHAR2(17),
    PRODUCT_ID  VARCHAR2(7),
    ORDER_DATE  DATE,
    UNIT_PRICE  NUMBER,
    QUANTITY    NUMBER,
    NEW_ORDER_DATE VARCHAR2(10) GENERATED ALWAYS AS (to_char(order_date, 'yyyymm'))
)
tablespace users
partition by range(NEW_ORDER_DATE) (
partition p2007 values less than('20080101'),
partition p2008 values less than('20090101'),
partition p2009 values less than('20100101'),
partition p2010 values less than('20110101'),
partition p2011 values less than('20120101'),
partition p2012 values less than('20130101'),
partition pmax  values less than(maxvalue)
);

 

-- DATA INSERT
ALTER TABLE order_item_pt_rg NOLOGGING; -- 빠른 INSERT를 위해 설정

INSERT INTO order_item_pt_rg
SELECT * FROM ORDER_ITEMS;
-- ORA - 00947 : 값의 수가 충분하지 않습니다. 발생
-- ( 컬럼 수가 맞지 않아서 발생 )

INSERT /*+ PARALLEL (A 4) APPEND */    -- NOLOGGING 일때 INSERT할때 APPEND하는게 좋음
  INTO order_item_pt_rg A (ORDER_ID,
                           PRODUCT_ID,
                           ORDER_DATE,
                           UNIT_PRICE,
                           QUANTITY)
SELECT /*+ PARALLEL (B 4) */ *
  FROM ORDER_ITEMS B;

 

-- 데이터 조회
desc order_items;

 

select /*+ PARALLEL (A 4) */ sum(QUANTITY)
  FROM ORDER_ITEMS A
 WHERE TO_CHAR(ORDER_DATE,'YYYY') BETWEEN '2008' AND '2009';

 

 

SELECT /*+ PARALLEL (A 4) */ sum(QUANTITY)
  FROM ORDER_ITEMS A
 WHERE NEW_ORDER_DATE BETWEEN TO_DATE(2008,'YYYY') AND TO_DATE(2009,'YYYY');
 
alter session set statistics_level=all;
select * from table(dbms_xplan.display_cursor(null,null,'allstats last'));
select * from table(dbms_xplan.display_cursor(null,null,'allstats last advanced'))

 

PARTITION ADMIN

-- 파티션 별 DML
SELECT * FROM order_item_pt_rg PARTITION (P2007);

INSERT INTO order_item_pt_rg PARTITION (PMAX)
(ORDER_ID,PRODUCT_ID,ORDER_DATE, UNIT_PRICE, QUANTITY)
VALUES ('C00150235','C084', SYSDATE, 999, 9);

 

-- PARTITION에 맞지 않는 데이터 INSERT
INSERT INTO ORDER_ITEM_PT_RG PARTITION (PMAX)
(ORDER_ID,PRODUCT_ID,ORDER_DATE, UNIT_PRICE, QUANTITY)
VALUES ('C00150235','C084', TO_DATE(201101,'YYYYMM'), 999, 9);
-- ORA-14401:삽입된 분할영역 키는 지정된 분할영역의 밖에 있습니다.
-- 키 값이 맞지 않아 INSERT 불가능

 

-- KEY COLUMN UPDATE
UPDATE order_item_pt_rg
   SET ORDER_DATE = SYSDATE
 WHERE PRODUCT_ID='P183';   -- 2008년 데이터
 -- ORA-14402 : 분할영역 키 열을 수정하는것은 분할영역 변경이 생깁니다.
 
SELECT TABLE_NAME,ROW_MOVEMENT
  FROM DBA_TABLES
 WHERE TABLE_NAME='ORDER_ITEM_PT_RG';

 

TABLE_NAME           ROW_MOVE
-------------------- --------
ORDER_ITEM_PT_RG  DISABLED

 

-- ROW MOVEMENT ENABLE
ALTER TABLE ORDER_ITEM_PT_RG ENABLE ROW MOVEMENT;
ALTER TABLE ORDER_ITEM_PT_RG DISABLE ROW MOVEMENT;

 

 

-- PARTITION DROP
ALTER TABLE ORDER_ITEM_PT_RG DROP partition p2007;

 

SELECT * FROM DBA_TAB_PARTITIONS
WHERE TABLE_NAME='ORDER_ITEM_PT_RG'

 

 

-- PARTITION SPLIT
ALTER TABLE ORDER_ITEM_PT_RG SPLIT partition PMAX
AT ('20140101')
INTO ( PARTITION P2013, PARTITION PMAX);

 

INSERT INTO ORDER_ITEM_PT_RG
(ORDER_ID, PRODUCT_ID, ORDER_DATE, UNIT_PRICE, QUANTITY)
VALUES ('AAAA','H111',TO_DATE(201311,'YYYYMM'),1,1);


commit;

 

SELECT * FROM ORDER_ITEM_PT_RG PARTITION(P2013);

 

 

 

 

-- PARTITION ADD
ALTER TABLE ORDER_ITEM_PT_RG ADD partition
p2013 values less than('20140101');
* ADD하는 FORM은 이게 맞지만 현재 구성은 PMAX로 해놓아서 추가가 되지 않음 --> SPLIT 해야함

 

-- PARTITION ADD
ALTER TABLE ORDER_ITEM_PT_RG ADD partition
p2013 values less than('20140101');

 

HASH PARTITION

SELECT * FROM DBA_DATA_FILES;

CREATE TABLESPACE TBS1 DATAFILE
'/oracle11/app/oradata/testdb/tbs1.dbf' SIZE 100M AUTOEXTEND ON;

CREATE TABLESPACE TBS2 DATAFILE
'/oracle11/app/oradata/testdb/tbs2.dbf' SIZE 100M AUTOEXTEND ON;

CREATE TABLESPACE TBS3 DATAFILE
'/oracle11/app/oradata/testdb/tbs3.dbf' SIZE 100M AUTOEXTEND ON;

CREATE TABLESPACE TBS4 DATAFILE
'/oracle11/app/oradata/testdb/tbs4.dbf' SIZE 100M AUTOEXTEND ON;

alter user system quota unlimited on tbs1;
alter user system quota unlimited on tbs2;
alter user system quota unlimited on tbs3;
alter user system quota unlimited on tbs4;

 

-- CRAETE TABLE PARTITION 이름이 랜덤 설정 ( 아래 그림 참조 )

CREATE TABLE CUSTOMERS_PT_HS
(
    CUSTOMER_ID     VARCHAR2(11),
    CUST_FIRST_NAME VARCHAR2(20) NOT NULL,
    CUST_LAST_NAME  VARCHAR2(20) NOT NULL,
    EMAIL           VARCHAR2(92),
    BIRTHDAY        DATE,
    PHONE_NUMBER    VARCHAR2(325),
    GENDER          VARCHAR2(1),
    WEDDING_TYPE    VARCHAR2(1),
    CUST_JOB_NAME   VARCHAR2(12)
)
PARTITION BY HASH(CUSTOMER_ID)
PARTITIONS 4
STORE IN (TBS1, TBS2, TBS3, TBS4);

 

-- 파티션 이름을 설정하면서 CRATE TABLE

CREATE TABLE CUSTOMERS_PT_HS2
(
    CUSTOMER_ID     VARCHAR2(11),
    CUST_FIRST_NAME VARCHAR2(20) NOT NULL,
    CUST_LAST_NAME  VARCHAR2(20) NOT NULL,
    EMAIL           VARCHAR2(92),
    BIRTHDAY        DATE,
    PHONE_NUMBER    VARCHAR2(325),
    GENDER          VARCHAR2(1),
    WEDDING_TYPE    VARCHAR2(1),
    CUST_JOB_NAME   VARCHAR2(12)
)
PARTITION BY HASH(CUSTOMER_ID)
(PARTITION P1 TABLESPACE TBS1,
 PARTITION P2 TABLESPACE TBS2,
 PARTITION P3 TABLESPACE TBS3,
 PARTITION P4 TABLESPACE TBS4
 );
 
 SELECT * FROM DBA_SEGMENTS
 WHERE SEGMENT_NAME LIKE 'CUSTOMERS_PT%'
   AND OWNER ='SYSTEM';
 


INSERT /*+ PARALLEL(A 4) APPEND */ INTO CUSTOMERS_PT_HS2 A
SELECT /*+ PARALLEL(B 4) */ * FROM CUSTOMERS B;

COMMIT;

SELECT * FROM CUSTOMERS_PT_HS2 PARTITION(P1);
-- 어떤 기준으로 나눠진지는 모르겠음

 

LIST PARTITION

-- list partition table 생성

CREATE TABLE LOCATIONS_PT_LI
(
    LOCATION_ID     NUMBER(4),
    STREET_ADDRESS  VARCHAR2(40),
    POSTAL_CODE     VARCHAR2(12),
    CITY            VARCHAR2(30) CONSTRAINT LOC_CITY_NN CHECK ("CITY" IS NOT NULL),
    STATE_PROVINCE  VARCHAR2(25),
    COUNTRY_ID      CHAR(2)
)
    PARTITION BY LIST (STATE_PROVINCE)
    (PARTITION REGION_EAST VALUES ('MA','NY','CT','NH','MD','VA','PA','NJ')
    TABLESPACE TBS1,
    PARTITION REGION_WEST VALUES ('CA','AZ','NM','OR','WA','UT','NV','CO')
    TABLESPACE TBS2,
    PARTITION REGION_SOUTH VALUES ('TX','KY','TN','LA','MS','AR','AL','GA')
    TABLESPACE TBS3,
    PARTITION REGION_CENTRAL VALUES ('OH','ND','SD','MO','IL','MI','IA',NULL)
    TABLESPACE TBS4,
    PARTITION EXTRA VALUES (DEFAULT) TABLESPACE USERS
    );

insert into LOCATIONS_PT_LI
select * from hr.LOCATIONS

 

COMMIT;

 

SELECT * FROM LOCATIONS_PT_LI PARTITION(EXTRA);

* 조건에 맞게 PARTITION이 나눠짐

'Study Note > Database' 카테고리의 다른 글

파티션 테이블(partition table) - 인덱스(index)  (0) 2016.02.25
SQL TUNNING - 1  (0) 2016.02.24
Index Organized Table (IOT)  (0) 2016.02.23
Index 생성 속도 향상 - parallel, nologging 옵션  (0) 2016.02.23
V$SQLAREA 자료 사전  (0) 2016.02.16
반응형

Index Organized Table (IOT)

□ Index Organized Table (IOT) 의 특성

  - B*Tree 구조에 전체 행 저장

    · 저장 공간 감소 (인덱스와 데이터 블록 공유)

  - Primary Key를 기준으로 테이블 데이터를 읽을 때 빠른 성능 제공

  - 논리적 ROWID 개념 지원

    · IOT내의 ROW를 지칭할 수 있는 논리적 ID

    · 2차 인덱스의 생성 및 사용이 가능

  - 읽기 전용 데이터에 적합

    · UPDATE가 자주 일어나는 경우, 인덱스 구조에 큰 변화 발생

 

 

-- IOT 테이블
CREATE TABLE TEST(
 NO NUMBER  CONSTRAINT TEST_NO_PK Primary Key,
 TITLE VARCHAR2(50),
 CONTNETS VARCHAR2(500)

)
 TABLESPACE USERS;
 
INSERT INTO TEST VALUES(3,'CCCC','CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC');
INSERT INTO TEST VALUES(1,'AAAA','AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA');
INSERT INTO TEST VALUES(5,'EEEE','EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE');
INSERT INTO TEST VALUES(2,'BBBB','BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB');
INSERT INTO TEST VALUES(4,'DDDD','DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD');
COMMIT;

 

CREATE TABLE IOTTEST (
NO NUMBER CONSTRAINT IOTTEST_PK_NO PRIMARY KEY,
TITLE VARCHAR2(50),
CONTENTS VARCHAR2(500)

)
ORGANIZATION INDEX TABLESPACE USERS
PCTTHRESHOLD 40 INCLUDING TITLE
OVERFLOW TABLESPACE USERS;

 
INSERT INTO IOTTEST VALUES(3,'CCCC','CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC');
INSERT INTO IOTTEST VALUES(1,'AAAA','AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA');
INSERT INTO IOTTEST VALUES(5,'EEEE','EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE');
INSERT INTO IOTTEST VALUES(2,'BBBB','BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB');
INSERT INTO IOTTEST VALUES(4,'DDDD','DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD');
COMMIT;


select no, title from test'


select no, title from iottest; 

 

--조회해보면 IOTTEST는 테이블이 없고 인덱스만 나온다.
select * from DBA_SEGMENTS
WHERE SEGMENT_NAME LIKE '%TEST%';.

select * from DBA_SEGMENTS
WHERE SEGMENT_NAME LIKE '%IOT%'
and TABLESPACE_NAME='USERS';

 

- ORGANIZATION INDEX TABLESPACE : IOT Data가 저장되는 Tablespace
- PCTTHRESHOLD(default : 50) : IOT를 위해서 예약된 공간의 백분율로,
  1블럭의 N% 비율보다 큰 데이터가 입력되면 키 열이 아닌 데이터는
  OVERFLOW TABLESPACE절에 정의된 테이블스페이스에 저장

- INCLUDING : IOT 행을 인덱스와 오버플로우 구역으로 나눌 열을 구분
  INCLUDING 뒤에 있는 컬럼만 제외하고 모두 오버플로우 세그먼트에 저장
  INCLUDING이 지정되지 않았는데 행 크기가 PCTTHRESHOLD를 초과하면
  기본 키 열을 제외한 모든 이 오버플로우 세그먼트에 저장
 
- OVERFLOW TABLESPACE : PCTTHRESHOLD를 초과하는 Data 행이 저장


 

'Study Note > Database' 카테고리의 다른 글

SQL TUNNING - 1  (0) 2016.02.24
파티션 테이블(partition table)  (0) 2016.02.24
Index 생성 속도 향상 - parallel, nologging 옵션  (0) 2016.02.23
V$SQLAREA 자료 사전  (0) 2016.02.16
SQL*TRACE  (0) 2016.02.16
반응형

Index 생성 속도 향상 - parallel, nologging 옵션

parallel processing을 적용함으로 써 인덱스 생성 속도를 올릴 수 있다.

또 인덱스 생성 시 log가 생기는데 이것은 시스템 부하를 발생시킬 우려가 있다. log를 안남기게 nologging 옵션을 주게 되면

index생성 속도를 더욱 향상시킬 수 있다.

 

SQL> create index emp_idx

      on emp(ename)

      nologging

      parallel 8;

 

주의

index 생성 후 logging mode와 parallel을 원상태로 돌려줘야함

 

SQL> alter index emp_idx logging;

SQL> alter index emp_idx parallel 1;

 

==> 이 설정을 무시하게 되면 이 index를 사용하는 쿼리는 조회시 parallel로 수행하게 되서

     시스템에 부하가 올 수 있다.

'Study Note > Database' 카테고리의 다른 글

파티션 테이블(partition table)  (0) 2016.02.24
Index Organized Table (IOT)  (0) 2016.02.23
V$SQLAREA 자료 사전  (0) 2016.02.16
SQL*TRACE  (0) 2016.02.16
DBMS_XPLAN.DISPLAY 다량데이터 조회시 참고사항  (0) 2016.02.16
반응형

5 절 식별자

1. 식별자(Identifiers) 개념

하나의 엔터티에 구성되어 있는 여러 개의 속성 중에 엔터티를 대표할 수 있는 속성을 의미하여 하나의 엔터티는 반드시 하나의 유일한 식별자가 존재해야 한다.

 

2. 식별자의 특징

특징

내용

비고

유일성

주식별자에 의해 엔터티 내에 모든 인스턴스들을 유일하게 구분

사원번호가 주 식별자가 모든 직원들에 대해 개인별로 고유하게 부여

최소성

주식별자를 구성하는 속성의 수는 유일성을 만족하는 최소의 수가 되어야함

사원번호만으로도 고유한 구조인데 사원분류코드+사원번호로 식별자가 구성될 경우 부적절한 주식별자 구조

불변성

주식별자가 한 번 특정 엔터티에 지정되면 그 식별자의 값은 변하지 않음

사원번호의 값이 변한다는 의미는 이전기록이 말소되고 새로운 기록이 발생되는 개념

존재성

주식별자가 지정되면 반드시 데이터 값이 존재 (Null 안됨)

사원번호 없는 회사직원은 있을 수 없음

 

 

3. 식별자 분류 및 표기법

. 식별자 분류

분류

식별자

설명

대표성 여부

주식별자

엔터티 내에서 각 어커런스를 구분할 수 있는 구분자이며, 타 엔터티와 참조관계를 연결할 수 있는 식별자

보조식별자

엔터티 내에서 각 어커런스를 구분할 수 있는 구분자이나 대표성을 가지지 못해 참조관계 연결을 못함

스스로 생성여부

내부식별자

엔터티 내부에서 스스로 만들어지는 식별자

외부식별자

타 엔터티와의 관계를 통해 타 엔터티로부터 받아오는 식별자

속성의 수

단일식별자

하나의 속성으로 구성된 식별자

복합식별자

둘 이상의 속성으로 구성된 식별자

대체 여부

본질식별자

업무에 의해 만들어지는 식별자

인조식별자

업무적으로 만들어지지는 않지만 원조식별자가 복잡한 구성을 가지고 있기 때문에 인위적으로 만든 식별자

. 식별자 표기법

화살표로 표현...........

 

4. 주식별자 도출기준

해당업무에서 자주 이용되는 속성을 주식별자로 지정

명칭, 내역 등과 같이 이름으로 기술되는 것들은 가능하면 주식별자로 지정하지 않음

-> length가 길어서

복합으로 주식별자로 구성할 경우 너무 많은 속성이 포함되지 않도록 함

-> 자식 손자 엔티티 증손자 엔티티까지 복잡한 데이터모델이 구현됨.

 

5. 식별자관계와 비식별자관계에 따른 식별자

. 식별자관계와 비식별자 관계의 결정

엔터티 사이 관계유형은 업무특징, 자식엔터티의 주식별자구성, SQL 전략에 의해 결정

 

. 식별자관계

자식엔터티의 주식별자로 부모의 주식별자가 상속이 되는 경우

 

. 비식별자관계

부모엔터티로부터 속성을 받았지만 자식엔터티의 주식별자로 사용 않고 일반속성으로만 사용하는 경우

 

. 식별자 관계로만 설정할 경우의 문제점

PK속성의 수가 데이터 모델의 흐름이 길어질수록 증가 할 수밖에 없다.

 

. 비식별자 관계로만 설정할 경우의 문제점

자식엔터티로 상속이 되지 않아 자식엔터티에서 데이터를 처리할 때 쓸데없이 부모엔터티까지 찾아가는 경우 발생

 

. 식별자관계와 비식별자관계 모델링

1) 비식별자관계 선택 프로세스

자식엔터티의 독립된 주식별자 구성이 필요한지를 분석

2) 식별자와 비식별자관계 비교

항목

식별자관계

비식자관계

목적

강한 연결관계 표현

약한 연결관계 표현

자식 주식별자 영향

자식 주식별자의 구성에 포함

자식 일반 속성에 포함

표기법

실선 표현

점선 표현

연결 고려사항

- 반드시 부모엔터티 종속

- 자식 주식별자구성에 부모 주식별자포함 필요

- 상속받은 주식별자속성을 타 엔터티에 이전 필요

- 자식 주식별자구성을 독립적으로 구성

- 자식 주식별자구성에 부모 주식별자 부분 필요

- 상속받은 주식별자속성을 타 엔터티에 차단 필요

 

'Certification > SQLD' 카테고리의 다른 글

제 4 절 관계(Relationship)  (0) 2016.02.22
제 3 절 속성(Attribute)  (0) 2016.02.22
제 2 절 엔터티(Entity)  (0) 2016.02.22
제 1 절 데이터 모델의 이해  (0) 2016.02.22
반응형

4 절 관계(Relationship)

1. 관계의 개념

. 관계의 정의

엔터티의 인스턴스 사이의 논리적인 연관성으로 존재의 형태로서나 행위로서 서로에게 연관성이 부여된 상태

 

. 관계의 페어링

엔터티 안에 인스턴스가 개별적으로 관계를 가지는 것(페어링)이고 이것의 집합을 관계로 표현

관계 페어링 : 각각의 엔터티의 인스턴스들이 자신이 관련된 인스턴스들과 관계의 어커런스로 참여하는 형태

 

2. 관계의 분류

존재에 의한 관계 : 연관관계는 항상 이용하는 관계로 존재적 관계에 해당

행위에 의한 관계 : 의존관계는 상대방 클래스 행위에 의한 관계가 형성될 때 구분하여 표현

 

3. 관계의 표기법

관계명(Membership) : 관계의 이름

ex ) 소속된다, 포함한다

관계차수(Cardinality) : 1:1, 1:M, M:N (p.56)

관계선택사양(Optionality) : 필수관계, 선택관계 (p.58)

 

4. 관계의 정의 및 읽는 방법

. 관계 체크사항

두 개의 엔터티 사이에 관심있는 연관규칙이 존재하는가?

두 개의 엔터티 사이에 정보의 조합이 발생되는가?

업무기술서, 장표에 관계연결에 대한 규칙이 서술되어 있는가?

업무기술서, 장표에 관계연결을 가능하게 하는 동사(Verb)가 있는가? -> 오답 명사로 나옴

. 관계 읽기

기준(Source) 엔터티를 한 개(One) 또는 각(Each)으로 읽는다.

대상(Target) 엔터티의 관계참여도 즉 개수(하나, 하나 이상)를 읽는다.

관계선택사양과 관계명을 읽는다.

 

'Certification > SQLD' 카테고리의 다른 글

제 5 절 식별자  (0) 2016.02.22
제 3 절 속성(Attribute)  (0) 2016.02.22
제 2 절 엔터티(Entity)  (0) 2016.02.22
제 1 절 데이터 모델의 이해  (0) 2016.02.22
반응형

3절 속성(Attribute)

1. 속성 (Attribute)의 개념

업무에서 필요로 한다

의미상 더 이상 분리되지 않는다

엔터티를 설명하고 인스턴스의 구성요소가 된다

 

2. 엔터티, 인스턴스와 속성, 속성 값에 대한 내용과 표기법

. 엔터티, 인스턴스, 속성, 속성 값의 관계

한 개의 엔터티는 두 개 이상의 인스턴스의 집합이어야 한다.

한 개의 엔터티는 두 개 이상의 속성을 갖는다.

한 개의 속성은 한 개의 속성 값을 갖는다.

 

3. 속성의 특징

해당 업무에서 필요하고 관리하고자 하는 정보

주식별자에 함수적 종속성을 가져야 함

하나의 속성에는 한 개의 값만 갖는다.

 

4. 속성의 분류

. 속성의 특성에 따른 분류

1) 기본속성

업무로부터 추출한 모든 속성 (업무상 코드로 정의한 속성 제외)

2) 설계속성

업무를 규칙화하기 위해 속성을 새로 만들거나 변형하여 정의하는 속성

3) 파생속성(=추출속성)

다른 속성에 영향을 받아 발생하는 속성으로서 보통 계산된 값들이 이에 해당된다.

 

. 엔터티 구성방식에 따른 분류

PK(Primary Key)속성 : 엔터티를 식별할 수 있는 속성

FK(Foreign Key)속성 : 다른 엔터티와의 관계에서 포함된 속성

일반 속성 : PK,FK에 포함되지 않은 속성

복합 속성(Composite Attribute) : 여러 세부 속성들로 구성

단순 속성(Simple Attribute) : 더 이상 다른 속성들로 구성될 수 없는 단순한 속성

단일 값(Single Value) : 속성 하나에 한 개의 값을 가진다.

다중 값(Multi Value) : 여러 개의 값을 가진다.

단일 값 속성(Single-Valued Attribute) : 반드시 하나의 값만 존재

다중 값 속성(Multi-Valued Attribute) : 여러 개의 값을 가짐.

=> 다중 값 속성의 경우 하나의 엔터티에 포함 할 수 없으므로 1차 정규화, 별도의 엔터티를 만들어 관계로 연결

 

5. 도메인(Domain)

각 속성이 가질 수 있는 값의 범위 (예시로 범위가 나왔음)

 

 

6. 속성의 명명(Naming)

1. 해당업무에서 사용하는 이름을 부여

2. 서술 식 속성명은 사용하지 않음

3. 약어사용은 가급적 제한

4. 전체 데이터모델에서 유일성 확보

 

'Certification > SQLD' 카테고리의 다른 글

제 5 절 식별자  (0) 2016.02.22
제 4 절 관계(Relationship)  (0) 2016.02.22
제 2 절 엔터티(Entity)  (0) 2016.02.22
제 1 절 데이터 모델의 이해  (0) 2016.02.22
반응형

2절 엔터티(Entity)

1. 엔터티란?

업무에 필요하고 유요한 정보를 저장하고 관리하기 위한 집합적인 것 (Things)

엔터티는 인스턴스의 집합이라고 말할 수 있고, 반대로 인스턴스라는 것은 엔터티의 하나의 값에 해당한다.

 

2. 엔터티와 인스턴스에 대한 내용과 표기법

사각형으로 표현, 엔터티와 엔터티간 ERD를 그린다.

 

3. 엔터티의 특징

반드시 필요하고 관리하고자 하는 정보

유일한 식별자에 의해 식별이 가능

영속적으로 존재하는 인스턴스의 집합 (‘한 개가 아니라 두 개 이상’)

엔터티는 업무 프로세스에 의해 이용되어야 한다.

엔터티는 반드시 속성이 있어야 한다

다른 엔터티와 최소 한 개 이상의 관계가 있어야 한다

 

4. 엔터티의 분류

. 유무형에 따른 분류

유형엔터티 : 물리적인 형태가 있고 안정적이며, 지속적으로 활용되는 엔터티로 업무로부터 엔터티를 구분

개념엔터티 : 물리적인 형태는 존재하지 않고 관리해야 할 개념적 정보로 구분이 되는 엔터티로 조직

사건엔터티 : 업무 수행함에 따라 발생되는 엔터티로서 비교적 발생량이 많으며 각종 통계 자료에 이용

. 발생시점에 따른 분류

1) 기본/키 엔터티 : 그 업무에 원래 존재하는 정보, 관계에 의해 생성되지 않고 독립적으로 생성,

타 엔터티의 부모 역할

ex) 사원, 부서, 고객, 상품, 자재

2) 중심 엔터티 : 기본 엔터티로부터 발생되고 그 업무에 있어서 중심적인 역할을 함

ex) 계약, 사고, 예금원장, 청구, 주문, 매출

3) 행위 엔터티 : 두 개 이상의 부모엔터티로부터 발생되고 자주 내용이 바뀌거나 데이터 양이 증가

ex) 주문목록, 사원변경이력

 

5. 엔터티의 명령

표기법

1. 현업업무에서 사용하는 용어 사용

2. 약어를 사용하지 않음

3. 단수명사를 사용

4. 유일하게 이름을 부여되어야 함

5. 엔터티 생성의미대로 이름 부여

 

'Certification > SQLD' 카테고리의 다른 글

제 5 절 식별자  (0) 2016.02.22
제 4 절 관계(Relationship)  (0) 2016.02.22
제 3 절 속성(Attribute)  (0) 2016.02.22
제 1 절 데이터 모델의 이해  (0) 2016.02.22
반응형

1 절 데이터 모델의 이해

1.모델링의 이해

모델링이란?

복잡한 현실세계단순화시켜 표현

모델이란 사물 또는 사건에 관한 양상이나 관점을 연관된 사람이나 그룹을 위하여 명확하게 하는 것

현실 세계의 추상화 된 반영

 

모델링의 특징 (추상화, 단순화, 명확화)

1) 추상화(모형화,가설적)는 현실세계를 일정한 형식에 맞추어 표현

2) 단순화는 쉽게이해 할 수 있도록 하는 개념

3) 명확화는 누구나 이해하기 쉽게 하기 위해 애매모호함을 제거하고 정확하게 현상을 기술

 

모델링의 세 가지 관점

1) 데이터 관점 : 업무가 어떤 데이터와 관련이 있는지 데이터간의 관계는 무엇인지 모델링하는 방법(what,data)

2) 프로세스 관점 : 무엇을 해야 하는지를 모델링하는 방법 (how,process)

3) 데이터와 프로세스와 상관관점 : 업무가 처리하는 일의 방법에 따라 데이터는 어떻게 영향을 받고 있는지 모델링 하는 방법 (Interaction)

 

2. 데이터 모델의 기본 개념의 이해

데이터 모델링이란?

정보시스템을 구축하기위한 데이터관점의 업무 분석 기법

현실세계의 데이터(what)에 대해 약속된 표기법에 의해 표현하는 과정

데이터베이스를 구축하기 위한 분석/설계의 과정

 

데이터 모델이 제공하는 기능

시스템을 원하는 모습으로 가시화 하도록 도와준다.

시스템의 구조와 행동을 명세화 할 수 있게 한다.

시스템을 구축하는 구조화된 틀을 제공

시스템을 구축하는 과정에서 결정한 것을 문서화 한다.

다양한 영역에 집중하기 위해 다른 영역의 세부 사항은 숨기는 다양한 관점을 제공

특정목표에 따라 구체화된 상세 수준의 표현방법을 제공

 

3. 데이터 모델링의 중요성 및 유의점

중요성

. 파급효과(Leverage)

성공적으로 수행되고 완료되면 이를 전체를 묶어서 병행테스트, 통합테스트를 수행

=> 데이터 구조의 변경으로 인한 일련의 변경작업은 전체 시스템 구축 프로젝트에서 큰 위험요소

. 복잡한 정보 요구사항의 간결한 표현(Conciseness)

=>가장 중요한 점은 정보 요구사항이 정확하고 간결하게 표현되어야 한다.

. 데이터 품질 (Data Quality)

 

유의성

) 중복(Duplication)

) 비유연성(Inflexibility)

-> 모델이 수시로 변경됨으로써 유지보수의 어려움을 가중시킬 수 있다.

) 비일관성(Inconsistency)

-> 데이터의 중복이 없더라도 비일관성은 발생

 

 

4. 데이터 모델링의 3단계 진행

데이터 모델링

내용

수준

개념적 데이터 모델링

추상화 수준이 높고 업무 중심적이고 포괄적인 수준의 모델링 진행, 전사적 데이터 모델링, EA수립시 많이 이용

추상적

 

 

 

구체적

논리적 데이터 모델링

시스템으로 구축하고자하는 업무에 대해 Key,속성,관계 등을 정확하게 표현, 재사용성이 높음

물리적 데이터 모델링

실제로 데이터베이스에 이식할 수 이도록 성능, 저장 등 물리적인 성격을 고려하여 설계

 

. 개념적 데이터 모델링 (Conceptual Data Modeling)

핵심 엔터티와 그들 간의 관계를 발견하고 표현하기 위해 엔터티-관계 다이어그램(ERD) 생성

데이터 요구를 공식화의 기능

1. 사용자와 시스템 개발자가 데이터 요구 사항을 발견을 지원

2. 현 시스템이 어떻게 변경되어야 하는가를 이해하는데 유용

 

. 논리적 데이터 모델링 (Logical Data Modeling)

누가(Who), 어떻게(How: Process), 전산화와는 별개로 비즈니스 데이터에 존재하는 사실들을 인식하여 기록

정규화 : 논리 데이터 모델 상세화 과정의 대표적인 활동

논리적 데이터 모델의 상세화 : 식별자 확정, 정규화, M:M 관계 해소, 참조 무결성 규칙 정의

 

. 물리적 데이터 모델링 (Physical Data Modeling)

데이터가 물리적으로 컴퓨터에 어떻게 저장될 것인가에 대한 정의

테이블, 칼럼 등으로 표현되는 물리적인 저장구조와 사용될 저장 장치, 자료를 추출하기 위해 사용될 접근 방법

개념적 데이터 모델링 = > 논리적 데이터 모델링 = > 물리적 데이터 모델링

 

5. 프로젝트 생명주기(Life Cycle)에서 데이터 모델링

Waterfall 기반에서는 데이터 모델링의 위치가 분석과 설계단계로 구분되어 명확하게 정의할 수 있다.

정보공학이나 구조적 방법론에서는 보통 분석 단계에서 업무중심의 논리적인 데이터 모델링을 수행

설계 단계에서 하드웨어와 성능을 고려한 물리적 데이터 모델링 수행

나선형 모델(RUP나 마르미)에서는 분석, 설계단계 양쪽에서 수행 되며 비중은 분석단계에서 논리적인 데이터

모델이 더 많이 수행되는 형태가 된다.

6. 데이터 모델링에서 데이터독립성의 이해

. 데이터독립성의 필요성 ( 데이터 독립성<-> 데이터 종속성 )

지속적으로 증가하는 유지보수 비용을 절감

데이터 복잡도를 낮추며 중복된 데이터를 줄임

끊임없는 요구사항에 대해 화면과 데이터베이스 간 서로 독립성을 유지

-> 데이터 독립성을 확보 시

View의 독립성을 유지하고 View에 영향을 주지 않고 변경이 가능

단계별 Schema에 따라 DDLDML 다름을 제공

 

. 데이터베이스 3단계 구조

외부단계 : 사용자와 가까운 단계로 사용자 개개인이 보는 자료에 대한 관점

개념단계 : 데이터 유형의 공통적인 사항을 처리하는 통합된 뷰를 스키마 구조로 디자인

내부적 단계 : 데이터가 물리적으로 저장된 방법에 대한 스키마 구조

 

. 데이터독립성 요소

외부 스키마(External Schema) : View 단계 여러 개의 사용자 관점으로 구성

개개 사용자가 보는 개인적 DB스키마

개념 스키마(Conceptual Schema) : 모든 사용자 관점을 통합한 조직 전체의 DB를 기술

DB에 저장되는 데이터와 그들 간의 관계를 표현하는 스키마

내부 스키마(Internal Schema) : DB가 물리적으로 저장된 형식

데이터가 실제적으로 저장되는 방법을 표현

 

. 두 영역의 데이터독립성

독립성

내용

특징

논리적 독립성

개념 스키마가 변경되어도 외부 스키마에는 영향을 미치지 않도록 지원

논리적 구조가 변경되어도 응용 프로그램에 영향 없음

-사용자 특성에 맞는 변경 가능

-통합 구조 변경가능

물리적 독립성

내부스키마가 변경되어도 외부/개념 스키마는 영향을 받지 않도록 지원

저장장치의 구조변경은 응용프로그램과 개념스키마에 영향 없음

-물리적 구조 영향 없이 개념구조 변경 가능

-개념 구조 영향 없이 물리적인 구조 변경 가능

 

. 사상(Mapping)

사상

내용

외부적/개념적 사상

(논리적 사상)

-외부적 뷰와 개념적 뷰의 상호관련성을 정의함

사용자가 접근하는 형식에 따라 다른 타입의 필드를 가질 수 있음. 개념적 뷰의 필드 타입은 변화가 없음

개념적/내부적 사상

(물리적 사상)

-개념적 뷰와 저장된 데이터베이스의 상호관련성을 정의

만약 저장된 데이터베이스 구조가 바뀐다면 개념적/내부적 사상이 바뀌어야 함. 그래야 개념적 스키마가 그대로 남아있게 됨

 

7. 데이터 모델링의 중요한 세 가지 개념

. 데이터 모델링의 세 가지 요소

1) 업무가 관여하는 어떤 것(Things)

2) 어떤 것이 가지는 성격(Attributes)

3) 업무가 관여하는 어떤 것 간의 관계(Relationships)

-> 데이터 모델링을 완성해가는 핵심개념 (Entity,Attribute,Relationship)

 

. 단수와 집합(복수)의 명명

개념

복수/집합개념

타입/클래스

개별/단수개념

어커런스/인스턴스

어떤 것(Thing)

엔터티 타입(Entity Type)

엔터티(Entity)

엔터티(Entity)

인스턴스(Instance),

어커런스(Occurrence)

어떤 것 간의 연관

(Association between Things)

관계(Relationship)

패어링(Pairing)

어떤 것의 성격

(Characteristic of a Thing)

속성(Attribute)

속성값(Attribute Value)

 

8. 데이터 모델링의 이해 관계자

. 이해관계자의 데이터 모델링 중요성 인식

DBA가 데이터 모델링을 전적으로 하는 예는 거의 없다. 업무시스템을 개발하는 응용시스템 개발자가 데이터 모델링도 같이하게 된다.

 

. 데이터 모델링의 이해관계자

프로젝트에 참여한 모든 IT기술자들은 데이터 모델링에 대해 정확하게 알고 있어야 한다.

 

9. 데이터 모델의 표기법인 ERD의 이해

. 데이터 모델 표기법

1976년 피터첸(Peter Chen)ERD라는 표기법을 만듦.

 

Entity : 사각형

Relation : 마름모

Attribute : 타원

 

. ERD표기법을 이용하여 모델링하는 방법

각 업무분석에서 도출된 엔터티와 엔터티간의 관계를 이해하기 쉽게 도식화된 다이어그램으로 표시하는 방법

데이터 흐름과 프로세스의 연관성의 가장 중요한 표기법이자 산출물

1) ERD 작업순서

1. 엔터티 그림

2. 엔터티를 적절하게 배치

3. 엔터티간 관계를 설정

4. 관계명을 기술

5. 관계의 참여도를 기술

6. 관계의 필수여부를 기술

 

2) 엔터티 배치

가장 중요한 엔터티를 왼쪽상단에 배치 이것을 중심으로 다른 엔터티를 나열하면서 전개

(사람의 눈이 따라가기에 편한 데이터 모델링 전개)

 

3) ERD 관계의 연결

초기에는 모둔 기본키 속성이 상속되는 식별자 관계를 설정

중복되는 관계가 발생되지 않도록 설정

Circle 관계도 발생하지 않도록 유의 작성

4) ERD 관계명의 표시

관계이름은 현재형을 사용하고 지나치게 포괄적인 용어 X

5) ERD 관계 관계차수와 선택성 표시

 

10. 좋은 데이터 모델의 요소

. 완전성(Completeness)

모든 데이터가 데이터 모델에 정의되어 있어야 함 (데이터 모델 검증에서 가장 먼저 확인)

. 중복배제(Non-Redundancy)

동일한 사실은 반드시 한 번만 기록

. 업무규칙(Business Rules)

모든 사용자가 해당 규칙에 대해서 동일한 판단을 하고 데이터를 조작함

. 데이터 재사용(DataReusability)

데이터의 통합성과 독립성에 대해 충분히 고려

. 의사소통(Communication)

데이터 모델이 진정한 의사소통의 도구로서의 역할

. 통합성(Integration)

동일한 데이터는 조직의 전체에서 한번만 정의되고 여러 다른 영역에서 참조 활용 하는 것.

 

'Certification > SQLD' 카테고리의 다른 글

제 5 절 식별자  (0) 2016.02.22
제 4 절 관계(Relationship)  (0) 2016.02.22
제 3 절 속성(Attribute)  (0) 2016.02.22
제 2 절 엔터티(Entity)  (0) 2016.02.22

+ Recent posts